
4. J.C. Gibbins and A. M. Mackey, J. Electrostatics, 2, No. 2, 355-363; ii, No. i, 119- 
126 (1981). 

5. B . V .  E l i s e e v ,  L. P. Pasechnik ,  and I .  V. Ufatov,  "Approximate s o l u t i o n  of  Nav ie r -  
Stokes equa t ions  by means of  the  Green ' s  f u n c t i o n  on the  example of  e s t a b l i s h i n g  flow 
in a p lane  c h a n n e l , "  VINITI, Moscow', 10.11.83,  No. 6231 (1983). 

6. A . A .  Samarsk i i ,  The Theory of  D i f f e r e n c e  Schemes [ in  Russ i an ] ,  Moscow (1977). 
7. G . I .  Marchuk, Methods of  Computer Mathematics [ in  Russ i an ] ,  Moscow (1980). 

THE DYNAMICS OF QUASISTEADY FLOW OF A LIQUID-GAS MIXTURE 

IN A CONDUIT 

V. A. Bruk UDC 532.529.5 

The one-dimensional flow of a liquid-gas mixture is investigated theoretically 
for the case of a horizontal conduit with phase transition. Approximate solu- 
tions have been obtained. 

The calculation of the nonsteady flows of gases and liquids in tubes is a complex mathe- 
matical problem and is usually accomplished by means of numerical methods [I-4]. Solutions 
in analytical form have been obtained in [5-7] and the basic quantitative relationships 
governing one-dimensional nonisothermal quasisteady gas flows have been investigated. Below 
we will examine the one-dimensional quasisteady nonisothermal flow of a liquid-~as mixture 
in a horizontal tube of constant cross section. Here we will take into consideration the 
influence of the phase transition on the process being investigated. 

The liquid concentration is characterized by the true ~p and flowrate ~ volumetric con- 
centrations [8]. We will assume that the value of ~ at the inlet ~i to the tube is small 
and, since the process is nearly steady, the quantity ~ is also small: 

r  (1) 

The quantities ~ and 6 are associated by the equality [8] 

= PVmlVs " ( 2 ) 

We will examine only the stratification of the flow which is observed at low liquid con- 
centrations ~ d 10 -2 [8]. Since the viscosity of the liquid is considerably greater than 
the viscosity of the gas and, moreover, the liquid moves near the wall of the tube as the 
flow becomes separated (in the lower portion), the velocity of the flow vs must be small in 
comparison with the gas velocity v. Then 

~ ~" (3) 

This assumption is confirmed by experimental results [8]. When B ~ 10 -2 the value of ~ is 
on the order of 10 -I According to these experimental data, however, for the small values 
of 6 that we are studying the function ~(8) is extremely close to the linear. Thus we can 
assume that 

Vs ~ = const. (4) 
Vm 

Keeping in mind the smallness of ~ and ~, instead of (4) we can write 

------- = -- = const. (5) 
v 
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Let us present the system of equations for the motion of the mixture. In writing the 
equations of energy, following [9], we will assume that the kinetic energy of the flow 
changes into the internal energy as a consequence of friction. Thus the friction does not 
alter the total energy of the mixture. Relying on the results of [8], we can present the 
continuity and energy equations in the form 

a (6)  t~p,,: + (1 --  ~) el + - ~  i ~  zv z +  (1 --  ~) po] = o, 

{ 1 _ qO oval } + o rp'zuz + (1 --  ~)pu + T t~~ (1 
at 

o [cppzuzvz TI z 0 + (1 - -  q~) puv + [qDpLv z + (1 - -  r .031 + + 

4k "T* -- T). + p l ~ v % + ( 1 - - 9 ) v l  =~-( (7) 

The existence of a continuous boundary of separation between the gas and the liquid in 
the case of flow separation enables us to speak of distinct frictional forces for the liquid 
and the gas at the surface of the tube. For the liquid the expression for the frictional 
force is written in the form [8] 

f z = Pz:v z �9 - (8) 

where  0 i s  t h e  c e n t r a l  a n g l e  in  t h e  c r o s s  s e c t i o n  o f  t h e  t ube  c o n s t r i c t i n g  t h e  boundary  o f  
phase  s e p a r a t i o n .  A s i m i l a r  r e s u l t  i s  found  f o r  t h e  gas 

[g = ~pv~O [ 2 0  (1 - -  9 )~1- ' .  

The a n g l e  O i s  e x p r e s s e d  in  t e rms  o f  t h e  v o l u m e t r i c  c o n c e n t r a t i o n  o f  t h e  l i q u i d  ~ .  
s e q u e n c e  o f  t h e  s m a l l n e s s  o f  ~ ,  t h e  f u n c t i o n  O(~) has  t h e  form 

0 = z-- z~ �9 (i0) 

The e q u a t i o n  f o r  t h e  c o n s e r v a t i o n  o f  momentum, w i t h  c o n s i d e r a t i o n  o f  e x p r e s s i o n s  ( 8 ) - ( 1 0 ) ,  
can be written in the form 

0 ap 
at [tPPzVz + (1 - -  r + .  a ltppzv~ + (I - -  q@ or31 + ~ - -  + 

( 1 1 )  
+ xgpv~ I - " ~ t  1 - -  (3r l / 31 + ~z P,~ o~ (2D)-!(3~12n 2) l / 8 = O. 

(9) 
As a con- 

The presence of a phase transition in the flow of the mixture calls for the introduction 
of the Clapeyron-Clausius equations into our examination: 

dp r ( 1  I ) - '  
. . . . .  (12) 

dT T p p~ 

The system of differential equations (6), 
of state for the gas 

and for the liquid 

(7), (ii), (12) must be enhanced by the equations 

p = RpTz (13)  

p ~, = const, 
(14) 

as well as by the empirically established relationship between the velocities of the liquid 
and gas phases, expressed by equality (5). 

We will assume that prior to the initial instant of time t = 0 the flow is steady-state. 
At the inlet to the tube, when t < 0, the steady-state boundary conditions are given as fol- 
lows: 
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p(t ,  ~ = P i ,  T(t ,  0 ) = T  i, G(t, 0 ) = G  i, ~(t, 0 ) = ~  i. (15)  

When t > 0 at the inlet to the tube and at the outlet from the tube, the quasisteady boundary 
conditions for pressure are specified: 

p (t: 0) = Pi + ~P' (0, (16)  

p (t, L) = ~ (L) + [~" (l). (17)  

Here ~ i s  a sma l l  d i m e n s i o n l e s s  q u a n t i t y  (~ < 1 ) ;  p'  and p" are q u a n t i t i e s  of  the  same o rde r  
of magnitude as Pi" 

The presumption of the presence of a phase transition indicates that the temperature 
at the inlet to the conduit is a single-valued function of pressure. The small changes in 
temperature must correspond to the small perturbations in pressure and we can therefore write 

0, t~<0, 
T( t ,  O ) = T i + ~ ( t ) p T ' ( t  ), ~ ( t ) =  l, t > O .  (18)  

The temperature of the external medium also undergoes insignificant deviations from the con- 
stant value 

T* (t, X) = T~ (X) + ~ (0 ~T*" (X, 0. (19) 

When t > 0 t h e  c o n s t a n t  v a l u e  (15) o f  t h e  v o l u m e t r i c  c o n c e n t r a t i o n  o f  t h e  l i q u i d  i s  r e t a i n e d  
a t  t h e  i n l e t  to  t h e  c o n d u i t .  

The c o n d i t i o n  o f  s t e a d y - s t a t e  f low under  boundary  c o n d i t i o n s  (15) s e r v e s  as  t h e  i n i t i a l  
c o n d i t i o n .  

Le t  us t r a n s f o r m  t h e  w r i t t e n  sy s t e m of  e q u a t i o n s  and r e d u c e  i t  to  d i m e n s i o n l e s s  form.  
We n o t e  t h a t  t h e  i n t e r n a l  e n e r g y  per  u n i t  mass o f  l i q u i d  i s  s m a l l e r  t h a n  t h e  c o r r e s p o n d i n g  
ene rgy  of  t he  gas  by t h e  magn i tude  of  t h e  s p e c i f i c  h e a t  o f  v a p o r i z a t i o n :  

u ~  = u - - r .  (20) 

We will assume that the absolute temperatures T i of the mixture and Ti* of the medium are 
large in comparison to their difference: 

max IT[ -- T i] .'-' PTi ~ Ti  (21) 

In this case, the change in temperature in the quasisteady flow is insignificant and the heat 
of vapor formation r can be treated as a linear function of temperature 

r = ri--A(T--Ti). (22) 

Let us introduce the dimensionless variables: 

(T - -  T ' ~ / T ~  = O, ( p - -  PP')/Pi = r pv/%,~ = 1, X/L  = y, t/to = ~, 

vlvi= F, T*/Ti= 0", P'IPi = *', /IPi = r T'ITi = 0', 

where t o = L/v i is the characteristic time of gas motion from the beginning to the end of 
the conduit. 

Equations (6), (7), (ii), and (12), with the aid of thermodynamic relationships and 
equalities (5), (20), and (22), are brought to the form 

0 v  , ~ v -  +(I - - , r  ,p +(1--,~) =o ,  
P.i O'~ Pi z (~ + ~0') (23)  

+ o%~ ( ,_   ,oZ )(<)+ o-;~ (, + lj _ 
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P~" ~p [t~ -- AT i ( 8 +  FS ' - -  1)! -]- - ~  Va~ [t~ - 
P ic~T j  

- AT~ (8 + ~8'-- ~)~ + ~ -  (1 -- ~) ~ ~ + ~-Oy- ~W) + 

-F Rz i O_ {(~ q_ F~') V[1 - -  (1 - -  ~r q~]} q- K_. (1 - -  qo.O(8 q- ~t8'--8") = O, 
c d Oy I 

( 2 a )  

o1I• • I 
v Io ~=,p + o (1 - ~)l + v'- tpF,~,~ + p (1 - , ) i  / + 

Pi [ Or Oy 

where 

[1 Ar--k~ (o+ r,8'-- 1)](r + ~r 
d(~ ~- ~ ' )  = r i  r i  

[ ] ' d 0 + ~ 8 ' )  RzT~ 8 + ~ ' - -  z~ p• (r + ~r (8+ ~8') 
z p s  

K __ 
4kL b =  ig~[L 

9i viDc p ' Dz iRT i " 

=0, (25) 

(26) 

We will assume that the following conditions are satisfied: 

m a x l l - - 8 * l N  cv ~ z-'~ \ - ~ ,  -~ii \ OS / i  - - ~ - i  N ~  1. (27)  

As was mentioned in [7], conditions (27) are characteristic for the flow of natural gas through 
gas pipelines. If an insignificant amount of the liquid phase (condensate) is present in 
the gas pipeline, additional small quantities appear in the problem, and namely: 

~i N = N Pi/P~ ~ RziTi/ri N ATi/r i ~ B ~ I. (28) 

Conditions (27) and (28) are also satisfied for subsonic flows of vapor-water mixtures 
through tubes. 

The solution to system (23)-(26) is sought through the method of the small parameter. 
For functions of the zeroth approximation we have the steady-state boundary conditions. At 
the inlet to the tube 

At the outlet from the tube 

r (T, o ) =  Oo (~, o ) =  1, ~o (~, o ) =  o. (29)  

, o h ,  I )=%(o ,  D. (30) 

For correction factors on the order of pr the boundary conditions at the inlet to the tube 
are written in the form 

8 r(~, O)=~r(~, 0 )=0 ,  (31) 
~1(~, 0 ) =  ~i, ~(~ ,  0 )=  0 (r = 2, 3 . . . .  ). 

(32) 

(r = 2, 3 . . . .  ). (33)  

At the outlet from the tube 

~1(% 1 ) = F ( ~ " - - ~ ' ) - F ~ h ( 0 ,  1); al,r(r, 1 )=%. (0 ,  1) 

In  z e r o t h  a p p r o x i m a t i o n  o f  p, from Eqs.  ( 2 3 ) - ( 2 6 )  we o b t a i n  
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1--%(1 -- - - -  PoP~)] oyOO~ K - -c- -  + ~ ( 0 o -  J) = o, (34)  
Io 

0r +b__ #g %=0, 
Oy 2 r 

(35) 

Oy tpoVo~ PL --F (l - -  tpo) /'o = 0 ,  (36) 
. 9 . i  

1 -  ATI:: (00--1)]r = O. (37) 
r i 

If the flow in zeroth approximation is isothermal, its characteristics satisfy Eq. (34). In 
this case, boundary condition (29) for temperature is also satisfied. Equation (37) in the 
case of isothermal flow is not satisfied. Therefore, we can assume that in zeroth approxima- 
tion there is no phase transition. In this case Eq. (36) breaks down into two equations: 
for the gas and the liquid, separately: 

[(1 -- %) 1o] = 0, (38) 
Oy 

0 (%Vo) = 0. (39) 
Oy 

Thus, in z e r o t h  approx imat ion ,  in t he  p l ace  of  system ( 3 4 ) - ( 3 7 ) ,  n e g l e c t i n g  the  phase 
t r a n s i t i o n ,  we o b t a i n  t he  system (34) ,  ( 3 5 ) ,  (38) ,  (39) .  This system of  equa t ions  has a so- 
l u t i o n  which s a t i s f i e s  the  a b o v e - c i t e d  boundary c o n d i t i o n s  (29) and (30) :  

~o = 1, r = (1--by) I/2, I,--= I, ~o=O. (40) 

The equations for the first-order functions are of the form 

) [ oo, o, o + , o + i+ P-i~1 -- __ 
Po ~Y T i Oy Vo Oce 

+K(i--qq)Ol+~,~"+ i - -o*)+  Rzi. o (r 
cp ' Oy 

P~ [ri o~1 + o__ C 2" ovol 
~..T~ t o, ou (vo,~,)+,,/Vo--g~-y ]=o,  (41) 

0r b b b [ 
ay 2r (r + lxr + ~ h + ~ LO' + i~e' + 

+ 1 oz ( r  l) - ~. - -~ /  J + 
zi -~ i 

+ b .~.~c-p,~ VoW( aq~, ~,/,+ ~,~ ov____~.=o ' 
2 ~ffo~. 2tr 2 / /ff/~iZi Oy 

a p ~ OVo~.....__~, 4 0 (Jl- -  ~1) "F 
Pi Oy Oy 

o[ (o, _,oi+,,+,+_,o<O,+,o:>]_o, 

(42) 

(43) 

RziTi de0 
= ~ o .  (44) 

ri d(Ol~-~O') 

The relationship between the temperature 01 and the function ~0 follows from Eq. (44) with 
the boundary condition (31): 
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O~ = RziTi-ln~o. (45) 
ri  

Equation (44) allows us also to conclude that the temperature increments p%' of second order 
of smallness correspond to the pressure increments p~' of first order of smallness. Just 
as with the other quantities of second order, we will subsequently not take into considera- 
tion the quantity pO'. 

Having substituted expression (45) into Eq. (41), we obtain a first-order equation for 
the function ~: 

X ay _IJ % + = dy T~ ay P~r i 

l o~ a + K(% + ~-e*)  r~,. a~ ~o 

I (%.~o) pi 
x 

T i 

Vo a~ (46) 

Inequalities (27) allow us to conclude that the quantity IPi/T i which figures in the right- 
hand side of Eq. (46) is a second-order quantity with respect to p if z i ~ i. The condition 
z i ~ 1 in actual practice is normally satisfied. It is violated only in the case of exceed- 
ingly high pressures. 

Having solved Eq. (46) with boundary condition (32) and having eliminated the second- 
order terms from the solution, we obtain 

2 1 .,.1+v ~ mPi vi (1 
m~(~' Y)=m~r176176 / - ( 1 - % ~ ) p z  ri(2+~) - W 2 - ' ) +  

[ 2 ,Tv+2(ln% 1 ) 2 1 +. Pi o~v . 
Pz. b ('v - -  2) 2 - -  ,~ b (2 - -  'v)~ 

p~c,7i K @'~*  , c -  ~ ~ , o  (x) ctx, u' , - ~  (y') + 1 - r 
ps ,_a = y, ~- -  1 ' 

(47) 

where v = cpTi2Rzi/~ri 2. 
Since the functions 81 and ~i are known, Eqs. (42) and (43) should be treated as a sys- 

tem relative to the functions ~z and Jl. In deriving the solution of this system, just as 
in [7], we will assume satisfaction of the condition 

b<~/2" (48) 
Then, from Eqs. (42) and (43), without consideration of the quantities of the second order 
of smallness, it follows that 

ar 
ay 

aA 
a9 

~,oi 
oi a i 

q- bJl + RTizi ay ~1~ = O, 

atl q)t pi~ ~ 

(49) 

( 5 o )  

The solution for a system such as (49), (50) under corresponding boundary conditions 
is presented in [7]. The expression for the function ~z(~, y) is written in the form 
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~ ~n~- +-i-d-- x ~h ('~, V) = 2 exp exp - -  
n = l  

• dX exp - -  ~f(O, X) sin ~ n X - -  d'r exp ~2n~ + 
0 

+ - - ~  (--1)" exp (--6) (~," (, ')  - -  I~ '  (~') + *~ (0, 1)) sin nn//, 

(Sl) 

where 

�9 P i % 2 ")-- 

@i(0, y) is a first-order correction factor to the pressure $ in the case of steady flow. 
This function is a solution of system (49), (50) without the terms containing derivatives 
with respect to time. 

The expression for the function jl(~, y) is obtained from Eq. (49): 

i, (*, y) -- y ,i + ~,' - ~i + ~ 2~ / I &~ -- 

1 o ( ~I ) 
b OV *x+  Rr~q*o ' 

(52) 

The functions %1, ~i + P~', Jl describe the deviations of temperature, pressure, and den- 
sity of the gas flow from the values of these quantities in the case of steady-state fl0w 
in the absence of a liquid phase. 

We note that in the flow accompanied by a phase transition the temperature of the mix- 
ture in first approximation is a function exclusively of the spatial coordinate, although 
the process is nonsteady. The exchange of heat with the external medium exerts no influence 
here. 

In the absence of temperature variations for the medium, the distribution of the liquid 
through the conduit is also steady-state and depends on pressure in zeroth approximation, 
as well as on the temperature of the medium. The variations in the temperature of the medium 
result in the appearance of traveling-wave superposition which corresponds to the integral 

( ,' ) of the function ~* ~----~o(X)dX in expression (47). The velocity u of propagation for 
e~, 

these waves is equal to the velocity of the liquid in zeroth approximation 

u = ~Vo (v) (53) 
and is small in comparison with the velocity of the gas (v 0 is the velocity of the gas in 
zeroth approximation),. The wave amplitude depends on numerous parameters. It increases as 
the coefficient of heat transfer increases, as well as with an increase in the length of the 
conduit, and it diminishes as the pressure and density Pivi of the gas flow increase. 

First-order correction factors for pressure are determinedfrom formula (51) whlch is 
analogous to the expression for the corresponding quantity in the case of single-phase flow 
[7]. If the functions ~', ~", T *r change smoothly (with a characteristic period �9 ~ I), 
then, as in the case of single-phase flow, in the expression for ~l we can drop the terms 
that are small with respect to the parameter b/n, as well as those terms which depend on the 
initial condition and diminish rapidly with time. As a result, we obtain an extremely simple 
expression for the function ~i [7]: 
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(54) 

Thus, the presence of an insignificant amount of liquid, and the phase transition with 
a smooth relationship between the perturbing factors and time, exert virtually no effect on 
the pressure distribution. 

Expression (52) for the first approximation of gas-flow density contains terms propor- 
tional to the root of the third degree from the true volumetric liquid concentration ~/s, 
as well as terms that are proportional to pressure fluctuations ~' and ~@". Consequently, 
the nonsteady portion of the gas-flow density is a superposition of fluctuations which are 
caused by pressure perturbations at the inlet to the conduit and at the outlet from the con- 
duit, as well as by the traveling waves that are due to perturbations in the temperature of 
the medium. 

The results obtained here allow us, specifying the concentration of the liquid phase 
at the inlet to the conduit, to calculate the changes in the flow rate of the liquid and in 
other flow parameters at the outlet. These problems are of interest in designing and moni- 
toring quasisteady operating regimes in conduits transporting liquid-gas mixtures. 

NOTATION 

~, $, the true and flow-rate concentrations of the liquid; G, mass flow rate of the 
gas; v, v~, velocities of the gas and of the liquid; Vm, velocity of the mixture; p, p~, den- 
sity of the gas and of the liquid; u, u~, specific internal energies of the gas and of the 
liquid; p, pressure; T, T*, temperatures of the mixture and of the medium; k, heat-transfer 
coefficient; D, inside diameter of the conduit; kg, ~, coefficients of hydraulic resistance 
for the gas and for the liquid; r, specific heat of vaporization; X, distance from the be- 
ginning of the conduit; t, time; L, length of the conduit; R, gas constant; z, coefficient 
of compressibility; Gi, vi, Pi, Pi, Ti, Ti*, zi, ri, ~i, values of the corresponding quanti- 
ties at the inlet to the conduit; Cp, specific heat capacitY of the gas at constant pressure; 
I, Joule-Thomson coefficient; P0, pressure at the outlet from the conduit for steady-state 
flow. 
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